Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 2001 BV3/39—03701, Final Beport
o\ Mav 49 - 2% (@)
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Enabling Technologies for Collaborative Simulators on Heterogeneous =Ct=

Networks.
DAAD \Q-4q -|-001 1T
6. AUTHOR(S)
V. Rego
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Purdue University, W. Lafayette, IN 47906
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office
P.O. Box 12211 5q4.5,5-—€,l —Q\P

Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

This project deals with an experimental approach to developing enabling technology for the efficient support of collaborative
simulation engines on heterogeneous networked platforms. The goal is to achieve collaborative operations of two kinds: cooperative
operations between distinct but neighboring numerical solvers (simulation engines), and also collaboration between users who interact
with neighboring solvers during model development, experimentation and production mode operation. To deliver efficient runtime
support, we propose an architecture that reuses legacy components from existing tool suites, and also offers a methodology for
developing new multithreaded simulation solvers. Our focus on efficient and portable runtime support departs from the traditional
view of layering application software on top of existing communication libraries and/or protocols such as TCP/IP. We believe that most
of the functionality and performance problems faced by such systems (e.g., scalability, multiprotocols, communicating threads,
asynchronous low-latency, high throughput communication) are directly tied to architectural issues of runtime support and protocol
layering. Our idea is to eliminate the layering that separates applications from protocols, and view an application as consisting of
protocol threads and communication threads. We minimize --- and eventually, given direct access to secure network devices, propose
to eliminate --- OS kemel involvement in communication. We emphasize software portability by exploiting portable user-space threads
and communication systems, and adhering to strictly portable options in threads management and protocol design.

14. SUBJECT TERMS 15. NUMBER OF PAGES
multiprotocols, threads, solvers, kernel, simulation. Z

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-2F Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
298-102

20011113 145

MASTER COPY: PLEASE KEEP THIS "MEMORANDUM OF TRANSMITTAL" BLANK FOR REPRODUCTION PURPOSES. WHEN
REPORTS ARE GENERATED UNDER THE ARO SPONSORSHIP, FORWARD A COMPLETED COPY OF THIS FORM WITH EACH
REPORT SHIPMENT TO THE ARO. THIS WILL ASSURE PROPER IDENTIFICATION. NOT TO BE USED FOR INTERIM
PROGRESS REPORTS; SEE PAGE 2 FOR INTERIM PROGRESS REPORT INSTRUCTIONS.

MEMORANDUM OF TRANSMITTAL

U.S. Army Research Office

ATTN: AMSRL-RO-BI (TR)

P.O. Box 12211

Research Triangle Park, NC 27709-2211

[] Reprint (Orig + 2 copies) [[] Technical Report (Orig + 2 copies)
[] Manuscript (1 copy) [x] Final Progress Report (Orig + 2 copies)
[] Related Materials, Abstracts, Theses (1 copy)

CONTRACT/GRANT NUMBER: ARO-MA-39415-CI-RIP D AAD \4-949-)-00(7]

REPORT TITLE: Enabling Technologies for Collaborative Simulators on Heterogeneous
. Networks

is forwarded for your information.

SUBMITTED FOR PUBLICATION TO (applicable only if report is manuscript):

Sincerely,

Vernon Rego

REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

Based on our experience with software system development and our expertise with collaborative numerical
solvers (simulation-engines), our objective in this projects is to develop a computational methodology and
software environment that supports collaborative solvers. We utilized the funding in this project to purchase a
high-end Sun Enterprise multiprocessor and three Dell workstations with wireless hubs. These machines are
used, along with another Sun multiprocessor, to perform multiprocessor-cluster experiments. Our focus is on
runtime support for collaboration between solvers, and runtime support for user-level collaboration between
analysts (simulation engine developers and/or users) who interact with solvers on neighboring sub-domains.
At the simulation-engine level, collaborative support implies efficient mechanisms for managing distributed
threads and synchronization (API, functionality and efficiency issues) and scalability (threads, and
ommunication). At the user-level, collaborative support implies efficient communication protocols
(multiprotocol support, realtime, multiway, low-latency and high-throughput communication) that provide all
the requisite efficiency and functionality for user-level collaborative interactions.

Borrowing from our experiences with CLAM (multithreaded protocols) and ParaSol (speculative, migrant-
threads based distributed simulation), we propose an architecture for which the major portion of our research
deals with issues at the lowest layer. Here, the Ariadne and Arachne threads systems offer threads functionality,
and the Clam communication substem offers highly efficient communication functionality. The kernel layer
exports Ariadne or Arachne threads to the solver layer, to new or legacy solvers like Ellpack, provides support
for threads scheduling and process synchronization via speculative executions. We are currently experimenting
with a methodology in which application layer code can be written without use of host ids, explicit
send/receive or processor synchronization primitives, with appropriate help from the solver layer, object layer
and kernel layer.

We have had considerable success with migrant-threads and object proxies, and in implementing optimistic and
speculative executions in the ParaSol simulation system. We are currently using this methodology to
synchronize processors, buidling functionality into the kernel layer. The object layer is an application-
independent layer, but requires object definitions for every interface (boundary) in the problem space. Because
these definitions depend on the data (problem) and not the solver, we are attempting to define them by class
libraries which represent different boundary geometries. With this, the object layer is made completely
independent of the data structures used by legacy systems, and also provides for object definitions in new
multithreaded solvers. We initially plan to offer users a “bind_subdomain(A, hostid)” primitive that, at the start
of execution, statically binds subdomain A to a solver running on proc (hostid). Since the object layer will

be equipped with an object location mechanism, users are relieved of the responsibility of programming in
terms of processor “ids”. Once “bind_subdomain(A, hostid)” runs to establish the object-processor map, any
invocation of object A by a thread automatically and transparently migrates the thread to processor hostid
which hosts subdomain A. We have used this system very effectively in both Ariadne and also in ParaSol.

Because a collaborative solver must iterate and communicate with neighboring solvers in a chaotic way,
communication is highly irregular. To enable such unpredictable communication patterns and yet enhance
communication performance (i.e., by eliminating high polling costs which involve several layers of a
communication protocol like TCP/IP), and to make speculative executions possible, all (interface) objects in the
object layer must provide SAVE and RESTORE methods, so that they can be transparently checkpointed at
appropriate times that are indexed by iteration indices. These checkpointed states will be (transparently)

used to restore objects, whenever necessary, during speculative computations.

.

The SOLVER LAYER provides for €ither legacy or new solvers. Using envelopes, modular legacy solvers like
EllPack can be implemented as three fat threads: (1).~an ‘‘input” thread that a user can interact with for
dynamic parameter modification, (2).~an ‘‘output” thread which offers dynamic display of simulation results,
and (3).~a “‘solver” thread that iterates over its subdomain, given boundary values. New solvers can be fully
designed in terms of an arbitrary number of threads, to maximize the potential benefits of design simplicity,
concurrency on multiprocessors, and performance. For example, even with as few as three threads for legacy
solvers like EllPack, Ariadne’s time-slicing feature enables separate actions to be performed concurrently:
exeution, output visualization and runtime modification of parameters. Depending on the legacy code,

further concurrency and object-definition support for checkpointing and restoration (to offer more flexibility at
the application-level) may be also be possible.

Publications
1. Multithreading Techniques and Applications, (in preparation) J. Sang and V. Rego.
2. Lazy Algorithms in Parallel Discrete Event Simulation, (in preparation), R. Pasquini and V. Rego.

